Magnetically reshapable 3D multi-electrode arrays of liquid metals for electrophysiological analysis of brain organoids

磁可重塑液态金属三维多电极阵列用于脑器官的电生理分析

阅读:6
作者:Enji Kim #, Eunseon Jeong #, Yeon-Mi Hong #, Inhea Jeong, Junghoon Kim, Yong Won Kwon, Young-Geun Park, Jiin Lee, Suah Choi, Ju-Young Kim, Jae-Hyun Lee, Seung-Woo Cho, Jang-Ung Park4

Abstract

To comprehend the volumetric neural connectivity of a brain organoid, it is crucial to monitor the spatiotemporal electrophysiological signals within the organoid, known as intra-organoid signals. However, previous methods risked damaging the three-dimensional (3D) cytoarchitecture of organoids, either through sectioning or inserting rigid needle-like electrodes. Also, the limited numbers of electrodes in fixed positions with non-adjustable electrode shapes were insufficient for examining the complex neural activity throughout the organoid. Herein, we present a magnetically reshapable 3D multi-electrode array (MEA) using direct printing of liquid metals for electrophysiological analysis of brain organoids. The adaptable distribution and the softness of these printed electrodes facilitate the spatiotemporal recording of intra-organoid signals. Furthermore, the unique capability to reshape these soft electrodes within the organoid using magnetic fields allows a single electrode in the MEA to record from multiple points, effectively increasing the recording site density without the need for additional electrodes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。