Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis

NEMO 寡聚化的阻碍会抑制破骨细胞生成和骨溶解

阅读:6
作者:Isra Darwech, Jesse Otero, Muhammad Alhawagri, Simon Dai, Yousef Abu-Amer

Abstract

The transcription factor NF-kappaB is essential for osteoclastogenesis and is considered an immune-modulator of rheumatoid arthritis and inflammatory osteolysis. Activation of NF-kappaB subunits is regulated by the upstream IkappaB kinase (IKK) complex which contains IKKalpha, IKKbeta, and IKKgamma; the latter also known as NF-kappaB essential modulator (NEMO). The role of IKKalpha and IKKbeta in the skeletal development and inflammatory osteolysis has been described, whereas little is known regarding the role of NEMO in this setting. Typically, signals induced by RANK ligand (RANKL) or TNF prompt oligomerization of NEMO monomers through the coiled-coil-2 (CC2) and leucine zipper (LZ) motifs. This step facilitates binding to IKKs and further relaying signal transduction. Given the central role of NF-kappaB in osteoclastogenesis, we asked whether NEMO is essential for osteoclastogenesis and whether interruption of NEMO oligomerization impedes osteoclast differentiation in vitro and in vivo. Using cell-permeable short peptides overlapping the CC2 and LZ motifs we show that these peptides specifically bind to NEMO monomers, prevent trimer formation, and render NEMO monomers susceptible for ubiquitin-mediated degradation. Further, CC2 and LZ peptides attenuate RANKL- and TNF-induced NF-kappaB signaling in bone marrow-derived osteoclast precursors (OCPs). More importantly, these peptides potently inhibit osteoclastogenesis, in vitro, and arrest RANKL-induced osteolysis, in mice. To further ascertain its role in osteoclastogenesis, we were able to block osteoclastogenesis using NEMO siRNA knockdown approach. Collectively, our data establish that obstruction of NEMO oligomerization destabilizes NEMO monomers, inhibits NF-kappaB activation, impedes osteoclastogenesis and arrests inflammatory osteolysis. Thus, NEMO presents itself as a promising target for anti-osteolytic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。