Fluorescent A2A and A3 adenosine receptor antagonists as flow cytometry probes

荧光 A2A 和 A3 腺苷受体拮抗剂作为流式细胞术探针

阅读:6
作者:Kiran S Toti, Ryan G Campbell, Hobin Lee, Veronica Salmaso, R Rama Suresh, Zhan-Guo Gao, Kenneth A Jacobson

Abstract

Adenosine receptor (AR) ligands are being developed for metabolic, cardiovascular, neurological, and inflammatory diseases and cancer. The ease of drug discovery is contingent on the availability of pharmacological tools. Fluorescent antagonist ligands for the human A2A and A3ARs were synthesized using two validated pharmacophores, 1,3-dipropyl-8-phenylxanthine and triazolo[1,5-c]quinazolin-5-yl)amine, which were coupled to eight reporter fluorophores: AlexaFluor, JaneliaFluor (JF), cyanine, and near infrared (NIR) dyes. The conjugates were first screened using radioligand binding in HEK293 cells expressing one of the three AR subtypes. The highest affinities at A2AAR were Ki 144-316 nM for 10, 12, and 19, and at A3AR affinity of Ki 21.6 nM for 19. Specific binding of JF646 conjugate MRS7774 12 to the HEK293 cell surface A2AAR was imaged using confocal microscopy. Compound 19 MRS7535, a triazolo[1,5-c]quinazolin-5-yl)amine containing a Sulfo-Cy7 NIR dye, was suitable for A3AR characterization in whole cells by flow cytometry (Kd 11.8 nM), and its bitopic interaction mode with an A3AR homology model was predicted. Given its affinity and selectivity (11-fold vs. A2AAR, ~ 50-fold vs. A1AR and A2BAR) and a good specific-to-nonspecific binding ratio, 19 could be useful for live cell or potentially a diagnostic in vivo NIR imaging tool and/or therapy targeting the A3AR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。