MDH2 Promotes Hepatocellular Carcinoma Growth Through Ferroptosis Evasion via Stabilizing GPX4

MDH2通过稳定GPX4逃避铁死亡来促进肝细胞癌的生长

阅读:6
作者:Wenjia Yu, Yingping Li, Chengchang Gao, Donglin Li, Liangjie Chen, Bolei Dai, Haoying Yang, Linfen Han, Qinqin Deng, Xueli Bian

Abstract

The crosstalk between tumor progression and ferroptosis is largely unknown. Here, we identify malate dehydrogenase 2 (MDH2) as a key regulator of ferroptosis. MDH2 deficiency inhibits the growth of hepatocellular carcinoma (HCC) cells and enhances their sensitivity to ferroptosis induced by RAS-selective lethal 3 (RSL3), a compound known to cause ferroptosis. MDH2 knock-down enhances RSL3-induced intracellular reactive oxygen species, free iron ions and lipid per-oxides levels, leading to HCC ferroptotic cell death which is rescued by ferrostatin-1 and iron chelator deferiprone. Importantly, the inhibition of HCC cell growth caused by MDH2 deficiency is partially rescued by ferroptosis blockade. Mechanistically, MDH2 resists RSL3-induced ferroptosis sensitivity dependent on glutathione peroxidase 4 (GPX4), an enzyme responsible for scavenging lipid peroxides, which is stabilized by MDH2 in HCC. The protein expressions of MDH2 and GPX4 are positively correlated with each other in HCC cell lines. Furthermore, through our UALCAN website analysis, we found that MDH2 and GPX4 are highly expressed in HCC samples. These findings reveal a critical mechanism by which HCC evades ferroptosis via MDH2-mediated stabilization of GPX4 to promote tumor progression and underscore the potential of MDH2 inhibition in combi-nation with ferroptosis inducers for the treatment of HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。