Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A

基因表达模式定义了 cAMP 和蛋白激酶 A 调控细胞周期的关键转录事件

阅读:12
作者:Alexander C Zambon, Lingzhi Zhang, Simon Minovitsky, Joan R Kanter, Shyam Prabhakar, Nathan Salomonis, Karen Vranizan, Inna Dubchak, Bruce R Conklin, Paul A Insel

Abstract

Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), a PKA-selective cAMP analog, alters the expression of approximately 4,500 of approximately 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPT-cAMP. Changes in mRNA and protein expression of several cell-cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrest of wild-type S49 cells. Within 2 h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。