Sudden Unexpected Death in Epilepsy and Respiratory Defects in a Mouse Model of DEPDC5-Related Epilepsy

DEPDC5 相关癫痫小鼠模型中癫痫和呼吸缺陷导致的突然意外死亡

阅读:7
作者:Hsin-Yi Kao, Yilong Yao, Tao Yang, Julie Ziobro, Mary Zylinski, Mohd Yaqub Mir, Shuntong Hu, Runnan Cao, Nurun Nahar Borna, Rajat Banerjee, Jack M Parent, Shuo Wang, Daniel K Leventhal, Peng Li, Yu Wang

Methods

Depdc5 was specifically deleted in excitatory or inhibitory neurons in the mouse brain to determine neuronal subtypes that drive epileptogenesis and SUDEP. Electroencephalogram (EEG), cardiac, and respiratory recordings were performed to determine cardiorespiratory phenotypes associated with SUDEP. Baseline respiratory function and the response to hypoxia challenge were also studied in these mice.

Results

Depdc5 deletion in excitatory neurons in cortical layer 5 and dentate gyrus caused frequent generalized tonic-clonic seizures and SUDEP in young adult mice, but Depdc5 deletion in cortical interneurons did not. EEG suppression immediately following ictal offset was observed in fatal and non-fatal seizures, but low amplitude rhythmic theta frequency activity was lost only in fatal seizures. In addition, these mice developed baseline respiratory dysfunction prior to SUDEP, during which ictal apnea occurred long before terminal cardiac asystole. Interpretation: Depdc5 deletion in excitatory neurons is sufficient to cause DEPDC5-related epilepsy and SUDEP. Ictal apnea and respiratory dysregulation play critical roles in SUDEP. Our study also provides a novel mouse model to investigate the underlying mechanisms of DEPDC5-related epilepsy and SUDEP. ANN NEUROL 2023;94:812-824.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。