Background
Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The
Conclusion
The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Results
An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and kLa values of ∼170 h-1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 gdcw L-1. Oxygen uptake rates of ∼34 mmol L-1 h-1 were achieved.
