Injury-induced MRP8/MRP14 stimulates IP-10/CXCL10 in monocytes/macrophages

损伤诱导的 MRP8/MRP14 刺激单核细胞/巨噬细胞中的 IP-10/CXCL10

阅读:9
作者:Juan Wang, Yoram Vodovotz, Liyan Fan, Yuehua Li, Zheng Liu, Rami Namas, Derek Barclay, Ruben Zamora, Timothy R Billiar, Mark A Wilson, Jie Fan, Yong Jiang

Abstract

Trauma/hemorrhagic shock is associated with morbidity and mortality due to dysregulated inflammation, which is driven in part by monocytes/macrophages stimulated by injury-induced release of damage-associated molecular pattern (DAMP) molecules. MRP8/MRP14 is an endogenous DAMP involved in various inflammatory diseases, though its mechanism of action is unclear. Circulating MRP8/MRP14 levels in human blunt trauma nonsurvivors were significantly lower than those of survivors (P < 0.001). Human monocytic THP-1 cells stimulated with MRP8/MRP14 expressed the chemokine IFN-γ inducible protein 10 (IP-10)/CXCL10. Circulating IP-10 levels in human blunt trauma patients were correlated positively with MRP8/MRP14 levels (r = 0.396, P < 0.001), and were significantly lower in trauma nonsurvivors than in survivors (P < 0.001). We therefore sought to determine the mechanisms by which MRP8/MRP14 stimulates IP-10 in monocytes/macrophages, and found that induction of IP-10 by MRP8/MRP14 required Toll-like receptor 4 and TRIF but not MyD88. Full induction of IP-10 by MRP8/MRP14 required synergy between the transcription factors NF-κB and IFN regulatory factor 3 (IRF3). The receptor for IP-10 is CXCR3, and MRP8/MRP14-induced chemotaxis of CXCR3(+) cells was dependent on the production of IP-10 in monocytes/macrophages. Furthermore, in vivo study with a mouse trauma/hemorrhagic shock model showed that administration of neutralizing antibody against MRP8 prevented activation of NF-κB and IRF3 as well as IP-10 production. Thus, the current study identified a novel signaling mechanism that controls IP-10 expression in monocytes/macrophages by MRP8/MRP14, which may play an important role in injury-induced inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。