Involvement of ADAM17-Klotho Crosstalk in High Glucose-Induced Alterations of Podocyte Function

ADAM17-Klotho 串扰参与高糖诱导的足细胞功能改变

阅读:5
作者:Dorota Rogacka, Patrycja Rachubik, Marlena Typiak, Tomasz Kulesza, Irena Audzeyenka, Moin A Saleem, Honorata Sikora, Natalia Gruba, Magdalena Wysocka, Adam Lesner, Agnieszka Piwkowska

Abstract

Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions. Given that disintegrin and metalloproteinase 17 (ADAM17) is responsible for the shedding of Klotho from the cell membrane, the present study investigated the impact of HG on the interplay between ADAM17 and Klotho in human podocytes. We demonstrated that ADAM17 protein levels significantly increased in urine, renal tissue, and glomeruli from diabetic rats, with a concomitant increase in glomerular albumin permeability. High glucose increased ADAM17 extracellular activity, NADPH oxidase activity, and albumin permeability in podocytes. These effects were reversed after treatment with ADAM17 inhibitor, in cells with downregulated ADAM17 expression, or after the addition of Klotho. Additionally, elevations of extracellular ADAM17 activity were observed in podocytes with the downregulation of Klotho expression. Our data indicate a novel mechanism whereby hyperglycemia deteriorates podocyte function via ADAM17 activation. We also demonstrated the ability of Klotho to protect podocyte function under hyperglycemic conditions in an ADAM17-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。