HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast

HIRA 是一种保守的组蛋白伴侣,通过转录刺激裂殖酵母在低剂量应激反应中发挥重要作用

阅读:5
作者:Moeko Chujo, Yusuke Tarumoto, Koichi Miyatake, Eisuke Nishida, Fuyuki Ishikawa

Abstract

Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9(+) as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9Δ cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。