The roles of the dimeric and tetrameric structures of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria

时钟蛋白 KaiB 的二聚体和四聚体结构在蓝藻中产生昼夜节律振荡中的作用

阅读:3
作者:Reiko Murakami, Risa Mutoh, Ryo Iwase, Yukio Furukawa, Katsumi Imada, Kiyoshi Onai, Megumi Morishita, So Yasui, Kentaro Ishii, Jonathan Orville Valencia Swain, Tatsuya Uzumaki, Keiichi Namba, Masahiro Ishiura

Abstract

The molecular machinery of the cyanobacterial circadian clock consists of three proteins, KaiA, KaiB, and KaiC. The three Kai proteins interact with each other and generate circadian oscillations in vitro in the presence of ATP (an in vitro KaiABC clock system). KaiB consists of four subunits organized as a dimer of dimers, and its overall shape is that of an elongated hexagonal plate with a positively charged cleft flanked by two negatively charged ridges. We found that a mutant KaiB with a C-terminal deletion (KaiB(1-94)), which lacks the negatively charged ridges, was a dimer. Despite its dimeric structure, KaiB(1-94) interacted with KaiC and generated normal circadian oscillations in the in vitro KaiABC clock system. KaiB(1-94) also generated circadian oscillations in cyanobacterial cells, but they were weak, indicating that the C-terminal region and tetrameric structure of KaiB are necessary for the generation of normal gene expression rhythms in vivo. KaiB(1-94) showed the highest affinity for KaiC among the KaiC-binding proteins we examined and inhibited KaiC from forming a complex with SasA, which is involved in the main output pathway from the KaiABC clock oscillator in transcription regulation. This defect explains the mechanism underlying the lack of normal gene expression rhythms in cells expressing KaiB(1-94).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。