Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study

深部脑刺激脚桥被盖核通过抑制海马细胞凋亡发挥神经保护作用:一项实验动物研究

阅读:14
作者:Chellappan Praveen Rajneesh, Tsung-Hsun Hsieh, Shih-Ching Chen, Chien-Hung Lai, Ling-Yu Yang, Hung-Yen Chin, Chih-Wei Peng

Abstract

The core objective of this study was to determine the neuroprotective properties of deep brain stimulation of the pedunculopontine tegmental nucleus on the apoptosis of the hippocampus. The pedunculopontine tegmental nucleus is a prime target for Parkinson's disease and is a crucial component in a feedback loop connected with the hippocampus. Deep brain stimulation was employed as a potential tool to evaluate the neuroprotective properties of hippocampal apoptosis. Deep brain stimulation was applied to the experimental animals for an hour. Henceforth, the activity of Caspase-3, myelin basic protein, Bcl-2, BAX level, lipid peroxidation, interleukin-6 levels, and brain-derived neurotrophic factor levels were evaluated at hours 1, 3 and 6 and compared with the sham group of animals. Herein, decreased levels of caspases activity and elevated levels of Bcl-2 expressions and inhibited BAX expressions were observed in experimental animals at the aforementioned time intervals. Furthermore, the ratio of Bcl-2/BAX was increased, and interleukin -6, lipid peroxidation levels were not affected by deep brain stimulation in the experimental animals. These affirmative results have explained the neuroprotection rendered by hippocampus apoptosis as a result of deep brain stimulation. Deep brain stimulation is widely used to manage neuro-motor disorders. Nevertheless, this novel study will be a revelation for a better understanding of neuromodulatory management and encourage further research with new dimensions in the field of neuroscience.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。