ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells

ABT-737 促进 tBid 线粒体积累,增强 TRAIL 诱导的胶质母细胞瘤细胞凋亡

阅读:9
作者:S Cristofanon, S Fulda

Abstract

To search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several glioblastoma cell lines in a highly synergistic manner (combination index <0.1). Interestingly, the concerted action of ABT-737 and TRAIL to trigger the accumulation of truncated Bid (tBid) at mitochondrial membranes is identified as a key underlying mechanism. ABT-737 and TRAIL cooperate to cleave BH3-interacting domain death agonist (Bid) into its active fragment tBid, leading to increased accumulation of tBid at mitochondrial membranes. Coinciding with tBid accumulation, the activation of Bcl2-associated X protein (Bax), loss of mitochondrial membrane potential, release of cytochrome-c and second mitochondria-derived activator of caspase (Smac) into the cytosol and caspase activation are strongly increased in cotreated cells. Of note, knockdown of Bid significantly decreases ABT-737- and TRAIL-mediated Bax activation and apoptosis. Also, caspase-3 silencing reduces ABT-737- and TRAIL-induced Bid cleavage and apoptosis, indicating that a caspase-3-driven, mitochondrial feedback loop contributes to Bid processing. Importantly, ABT-737 profoundly enhances TRAIL-triggered apoptosis in primary cultured glioblastoma cells derived from tumor material, underlining the clinical relevance. Also, ABT-737 acts in concert with TRAIL to suppress tumor growth in an in vivo glioblastoma model. In conclusion, the rational combination of ABT-737 and TRAIL cooperates to trigger tBid mitochondrial accumulation and apoptosis. This approach presents a promising strategy for targeting the apoptosis pathways in glioblastoma, which warrants further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。