CDGSH iron sulfur domain 2 mitigates apoptosis, oxidative stress and inflammatory response caused by oxygen-glucose deprivation/reoxygenation in HT22 hippocampal neurons by Akt-Nrf2-activated pathway

CDGSH 铁硫结构域 2 通过 Akt-Nrf2 激活通路减轻 HT22 海马神经元因氧-葡萄糖缺乏/复氧引起的细胞凋亡、氧化应激和炎症反应

阅读:5
作者:Xiaoyan Ren, Jiangang Yu, Lili Guo, Zaili Zhang

Abstract

CDGSH iron sulfur domain 2 (Cisd2) is known as a key determinant factor in maintaining cellular homeostasis. However, whether Cisd2 contributes to the mediation of neuronal injury during ischemic stroke has not been well stressed. This work focuses on investigating the role of Cisd2 in regulating neuronal injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R). The dramatic down-regulation of Cisd2 was observed in hippocampal neurons suffering from OGD/R injury. In Cisd2-overexpressed neurons, OGD/R-induced neuronal apoptosis, oxidative stress and inflammation were prominently mitigated. Further investigation uncovered that the forced expression of Cisd2 reinforced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in OGD/R-exposed neurons. Moreover, the overexpression of Cisd2 enhanced Akt activation, and the restraint of Akt abolished Cisd2-induced Nrf2 activation. Importantly, restraint of Nrf2 reversed Cisd2-conferred neuroprotective effects in OGD/R-exposed neurons. Taken together, our findings indicate that Cisd2 is able to protect neurons from OGD/R-induced injuries by strengthening Nrf2 activation via Akt. Our work identifies Cisd2 as a potential determinant factor for neuronal injury during cerebral ischemia/reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。