Exploring the Genetic and Functional Diversity of Porphyromonas gingivalis Survival Factor RagAB

探索牙龈卟啉单胞菌生存因子 RagAB 的遗传和功能多样性

阅读:8
作者:Pauline G Montz, Evdokia Dafni, Bernd Neumann, Dongmei Deng, Mohamed M H Abdelbary, Georg Conrads

Abstract

Porphyromonas gingivalis is a key pathogen in periodontitis. Its outer membrane contains the RagAB transport complex, which has been implicated in protein uptake, essential for a proteolytic species. RagA is a 22-stranded β-barrel, and RagB is the corresponding 4-TPR lid, together forming a TonB-dependent system acting as a "pedal bin". Four different alleles were observed, of which ragAB-1 is more virulent than the others. Our aim was to map ragAB in 129 strains of P. gingivalis and related species available in our collection, supported by a newly introduced universal PCR for amplification/sequencing of all four ragA variants and to find reasons for the differences in virulence and/or fitness. Regarding the PCR method, by pairing established Long-PCR primers with our newly designed sequencing primers (ragA-F0, -F1, -R2, -R2a, -R4), it was possible to amplify and sequence all four ragA variants. The same was not possible for ragB due to high heterogeneity. The mapping allowed us to type all strains into ragAB-1-4. For each type, some strains (of mainly animal origin such as Porphyromonas gulae) with slightly different amino acid sequences were identified (designated ragAB-1a to -4a). In terms of function, the transfer of recently discovered SusCD information to the similar RagAB complex provided new insights. Substrate specificity as well as length of pedal could be the route to differential virulence (survival rate, fitness) as Rag-1 (closer related to Rag-3/4) and Rag-2 were found to be massively different here. In general, substrate-ligand-binding sites seem to be quite variable with the exception of Rag-1, probably indicating nutritional preferences. In addition, an insertion (8 aa long) found in loop L7 throughout RagA-2 could not only affect the dynamics of lid opening/closing but might also alter the associated substrate throughput rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。