Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells

靶向和全基因组测序揭示影响人类干细胞中 Cas9 特异性的单核苷酸变异

阅读:5
作者:Luhan Yang, Dennis Grishin, Gang Wang, John Aach, Cheng-Zhong Zhang, Raj Chari, Jason Homsy, Xuyu Cai, Yue Zhao, Jian-Bing Fan, Christine Seidman, Jonathan Seidman, William Pu, George Church

Abstract

CRISPR/Cas9 has demonstrated a high-efficiency in site-specific gene targeting. However, potential off-target effects of the Cas9 nuclease represent a major safety concern for any therapeutic application. Here, we knock out the Tafazzin gene by CRISPR/Cas9 in human-induced pluripotent stem cells with 54% efficiency. We combine whole-genome sequencing and deep-targeted sequencing to characterise the off-target effects of Cas9 editing. Whole-genome sequencing of Cas9-modified hiPSC clones detects neither gross genomic alterations nor elevated mutation rates. Deep sequencing of in silico predicted off-target sites in a population of Cas9-treated cells further confirms high specificity of Cas9. However, we identify a single high-efficiency off-target site that is generated by a common germline single-nucleotide variant (SNV) in our experiment. Based on in silico analysis, we estimate a likelihood of SNVs creating off-target sites in a human genome to be ~1.5-8.5%, depending on the genome and site-selection method, but also note that mutations might be generated at these sites only at low rates and may not have functional consequences. Our study demonstrates the feasibility of highly specific clonal ex vivo gene editing using CRISPR/Cas9 and highlights the value of whole-genome sequencing before personalised CRISPR design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。