Proteomic Characterization of Corneal Epithelial and Stromal Cell-Derived Extracellular Vesicles

角膜上皮和基质细胞衍生的细胞外囊泡的蛋白质组学表征

阅读:5
作者:Vincent Yeung, Nikolay Boychev, Levi N Kanu, Veronica Ng, Amy E Ross, Audrey E K Hutcheon, Joseph B Ciolino

Abstract

Communication between the different layers of the cornea (epithelium and stroma) is a complex, yet crucial element in the corneal healing process. Upon corneal injury, it has been reported that the bi-directional cross talk between the epithelium and stroma via the vesicular secretome, namely, extracellular vesicles (EVs), can lead to accelerated wound closure upon injury. However, the distinct protein markers of EVs derived from human corneal epithelial (HCE) cells, keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) remain poorly understood. All EVs were enriched for CD81 and showed increased expression levels of ITGAV and FN1 in HCM-EVs compared to HCE- and HCF-EVs. All EVs were negative for GM130 and showed minimal differences in biophysical properties (particle concentration, median particle size, and zeta potential). At the proteomic level, we show that HCM-EVs are enriched with proteins associated with fibrosis pathways, such as COL6A1, COL6A2, MMP1, MMP2, TIMP1, and TIMP2, compared to HCE-, HCK-, and HCF-EVs. Interestingly, HCE-EVs express proteins involved with the EIF-2 signaling pathway (stress-induced signals to regulate mRNA translation), such as RPS21, RALB, EIF3H, RALA, and others, compared to HCK-, HCF-, and HCM-EVs. In this study, we isolated EVs from cell-conditioned media from HCE, HCKs, HCFs, and HCMs and characterized their biophysical and protein composition by Western blot, nanoparticle tracking analysis, and proteomics. This study supports the view that EVs from the corneal epithelium and stroma have a distinct molecular composition and may provide novel protein markers to distinguish the difference between HCE-, HCK-, HCF-, and HCM-EVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。