HNF-1β alleviates podocyte injury in lupus nephritis by maintaining endoplasmic reticulum homeostasis

HNF-1β 通过维持内质网稳态减轻狼疮性肾炎足细胞损伤

阅读:4
作者:Hui-Mei Zou #, Jie Yu #, Yuan-Yuan Ruan #, Ying Xie, Xiao-Min An, Pei-Lei Chen, Ying-Qin Luo, Ming-Jun Shi, Miao Liu, Li-Fen Xu, Jun Liu, Bing Guo, Fan Zhang

Conclusion

This study provides novel insights into the regulatory mechanisms of HNF1-β in LN emphasising its impact on the Derlin-1/VCP/VIMP complex, ER stress and podocyte apoptosis. These findings have the potential to inform the development of new diagnostic tools and therapeutic strategies for LN.

Methods

In vitro and in vivo models of LN were established using glomerular podocytes treated with LN serum and MRL/lpr mice, respectively. The expression levels of HNF1-β were analysed in kidney tissues from patients with LN and MRL/lpr mice. To assess the effects of HNF1-β inhibition, an adeno-associated virus vector carrying HNF1-β short hairpin was administered to MRL/lpr mice. In vitro, glomerular podocytes were transfected with HNF1-β small interfering RNA (siRNA) or HNF1-β overexpression plasmids to explore their regulatory effects on the Derlin-1/VCP/VIMP complex and podocyte apoptosis. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were performed to investigate the transcriptional activation of Derlin-1 and VCP promoters by HNF1-β.

Objective

The current study aims to elucidate the critical function of hepatocyte nuclear factor 1-beta (HNF1-β) in lupus nephritis (LN) by investigating its modulation of the Derlin-1/valosin-containing protein (VCP)/VCP-interacting membrane selenoprotein (VIMP) complex, endoplasmic reticulum (ER) stress and podocyte apoptosis.

Results

A significant decrease in HNF1-β levels was observed in kidney tissues from patients with LN while MRL/lpr mice exhibited an initial compensatory increase followed by a subsequent decrease in renal HNF1-β expression. Overexpression of HNF1-β transcriptionally upregulated Derlin-1 and VCP mitigating LN serum-induced ER stress and podocyte apoptosis. In contrast, HNF1-β inhibition exacerbated renal dysfunction and structural damage in MRL/lpr mice. Interestingly, HNF1-β inhibition transcriptionally repressed ERP44, leading to calcium ions (Ca²+) release-mediated disruption and inactivation of the Derlin-1/VCP/VIMP complex. This finding suggests that HNF1-β not only regulates the expression of key proteins in the Derlin-1/VCP/VIMP complex but also influences their assembly through Ca²+ release regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。