A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations

一种新型自扩增 mRNA,通过大域突变降低细胞毒性并增强蛋白质表达

阅读:15
作者:Yue Gong, Danni Yong, Gensheng Liu, Jiang Xu, Jun Ding, William Jia

Abstract

The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA. In this study, in vitro adaptive passaging of saRNA is conducted under exogenous interferon pressure, which revealed several mutations in the nonstructural protein (NSP). Notably, two stable mutations, Q48P and I113F, situated in the NSP3 macrodomain (MD), attenuated its mono adenosine diphosphate ribose (MAR) hydrolysis activity and exhibited decreased replication but increased payload expression compared to wild-type saRNA (wt saRNA). Transcriptome sequencing analysis unveils diminished activation of the double-stranded RNA (dsRNA) sensor and, consequently, a significantly reduced innate immune response compared to wt saRNA. Furthermore, the mutant saRNA demonstrated less translation inhibition and cell apoptosis than wt saRNA, culminating in higher protein expression both in vitro and in vivo. These findings underscore the potential of reducing saRNA replication-dependent dsRNA-induced innate immune responses through genetic modification as a valuable strategy for optimizing saRNA, enhancing payload translation efficiency, and mitigating saRNA cytotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。