TARANIS interacts with VRILLE and PDP1 to modulate the circadian transcriptional feedback mechanism in Drosophila

TARANIS 与 VRILLE 和 PDP1 相互作用,调节果蝇的昼夜节律转录反馈机制

阅读:13
作者:Oghenerukevwe Akpoghiran, Dinis J S Afonso, Yanan Zhang, Kyunghee Koh

Abstract

The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and post-translational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1. Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。