Melatonin ameliorates hepatic steatosis by inhibiting NLRP3 inflammasome in db/db mice

褪黑激素通过抑制 db/db 小鼠的 NLRP3 炎症小体改善肝脏脂肪变性

阅读:10
作者:Yongxiang Yu, Dongru Chen, Yuhua Zhao, Jianjun Zhu, Xiaohui Dong

Conclusion

Our study concluded that melatonin could safeguard against NAFLD by improving hepatic steatosis in db/db mice, and this action could be associated with the regulation of the NLRP3 inflammasome activation.

Methods

Melatonin (bid, 30 mg/kg/day, i.p.) was administrated to db/db mice for 8 weeks, while saline was administrated to db/m mice. The metabolic parameters of mice were measured using an automatic biochemistry analyzer. The oxidative stress indexes and mitochondrial membrane potential (MMP) were determined with kits. Pathological assessment in liver tissues was used to analyze the effects of melatonin on hepatic steatosis. The levels of IL-1β and IL-18 were detected with ELISA kits. The mRNA levels of NLRP3 inflammasome were detected using quantitative real-time PCR assay, and protein expressions were estimated using Western blotting assay. Immunofluorescence staining was used to evaluate the caspase-1 expression in the liver.

Results

Melatonin treatment significantly reduced blood glucose, serum insulin, body weight, related liver weight, serum lipids, and hepatic enzymes in db/db mice. Melatonin markedly corrected the NAFLD phenotypes, including lipid accumulation, steatohepatitis, fibrosis, and oxidative stress levels. Melatonin significantly improved the MMP level and decreased the serum IL-1β and IL-18 concentrations. The mRNA levels of the NLRP3 inflammasome could also be remarkably reversed by melatonin in the liver tissues. The activation of the NLRP3 inflammasome was also suppressed, evidenced by the downregulated proteins of NLRP3, caspase-1, IL-1β, and IL-18. The enhanced fluorescence intensity of caspase-1 in the liver tissues was also obviously weakened by the melatonin treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。