Morphological analysis for neuronal pathway from the hindbrain ependymocytes to the hypothalamic kisspeptin neurons

后脑室管膜细胞至下丘脑吻肽神经元神经通路的形态学分析

阅读:8
作者:Chikaya Deura, Shiori Minabe, Kana Ikegami, Naoko Inoue, Yoshihisa Uenoyama, Kei-Ichiro Maeda, Hiroko Tsukamura

Abstract

Hindbrain ependymocytes are postulated to have a glucose-sensing role in regulating gonadal functions. Previous studies have suggested that malnutrition-induced suppression of gonadotropin secretion is mediated by noradrenergic inputs from the A2 region in the solitary tract nucleus to the paraventricular nucleus (PVN), and by corticotropin-releasing hormone (CRH) release in the hypothalamus. However, no morphological evidence to indicate the neural pathway from the hindbrain ependymocytes to hypothalamic kisspeptin neurons, a center for reproductive function in mammals, currently exists. The present study aimed to examine the existence of a neuronal pathway from the hindbrain ependymocytes to kisspeptin neurons in the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). To determine this, wheat-germ agglutinin (WGA), a trans-synaptic tracer, was injected into the fourth ventricle (4V) in heterozygous Kiss1-tandem dimer Tomato (tdTomato) rats, where kisspeptin neurons were visualized by tdTomato fluorescence. 48 h after the WGA injection, brain sections were taken from the forebrain, midbrain and hindbrain and subjected to double immunohistochemistry for WGA and dopamine β-hydroxylase (DBH) or CRH. WGA immunoreactivities were found in vimentin-immunopositive ependymocytes of the 4V and the central canal (CC), but not in the third ventricle. The WGA immunoreactivities were detected in some tdTomato-expressing cells in the ARC and AVPV, DBH-immunopositive cells in the A1-A7 noradrenergic nuclei, and CRH-immunopositive cells in the PVN. These results suggest that the hindbrain ependymocytes have neuronal connections with the kisspeptin neurons, most probably via hindbrain noradrenergic and CRH neurons to relay low energetic signals for regulation of reproduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。