Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model

在阿尔茨海默病小鼠模型中,产前酒精暴露会导致小胶质细胞持续活化,并对认知和代谢结果产生年龄和性别特异性影响

阅读:6
作者:Kathleen R Walter, Dane K Ricketts, Brandon H Presswood, Susan M Smith, Sandra M Mooney

Background

Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer's Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.

Conclusions

ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.

Methods

Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5-17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8-10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.

Results

ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。