The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca2+ dynamics in adult mice

转录因子 Pax6 是成年小鼠胰腺 β 细胞身份、葡萄糖调节的 ATP 合成和 Ca2+ 动力学所必需的

阅读:8
作者:Ryan K Mitchell, Marie-Sophie Nguyen-Tu, Pauline Chabosseau, Rebecca M Callingham, Timothy J Pullen, Rebecca Cheung, Isabelle Leclerc, David J Hodson, Guy A Rutter

Abstract

Heterozygous mutations in the human paired box gene PAX6 lead to impaired glucose tolerance. Although embryonic deletion of the Pax6 gene in mice leads to loss of most pancreatic islet cell types, the functional consequences of Pax6 loss in adults are poorly defined. Here we developed a mouse line in which Pax6 was selectively inactivated in β cells by crossing animals with floxed Pax6 alleles to mice expressing the inducible Pdx1CreERT transgene. Pax6 deficiency, achieved by tamoxifen injection, caused progressive hyperglycemia. Although β cell mass was preserved 8 days post-injection, total insulin content and insulin:chromogranin A immunoreactivity were reduced by ∼60%, and glucose-stimulated insulin secretion was eliminated. RNA sequencing and quantitative real-time PCR analyses revealed that, although the expression of key β cell genes, including Ins2, Slc30a8, MafA, Slc2a2, G6pc2, and Glp1r, was reduced after Pax6 deletion, that of several genes that are usually selectively repressed ("disallowed") in β cells, including Slc16a1, was increased. Assessed in intact islets, glucose-induced ATP:ADP increases were significantly reduced (p < 0.05) in βPax6KO versus control β cells, and the former displayed attenuated increases in cytosolic Ca2+ Unexpectedly, glucose-induced increases in intercellular connectivity were enhanced after Pax6 deletion, consistent with increases in the expression of the glucose sensor glucokinase, but decreases in that of two transcription factors usually expressed in fully differentiated β-cells, Pdx1 and Nkx6.1, were observed in islet "hub" cells. These results indicate that Pax6 is required for the functional identity of adult β cells. Furthermore, deficiencies in β cell glucose sensing are likely to contribute to defective insulin secretion in human carriers of PAX6 mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。