mRNA expression level of CDH2, LEP, POSTN, TIMP1 and VEGFC modulates 5-fluorouracil resistance in colon cancer cells

CDH2、LEP、POSTN、TIMP1 和 VEGFC 的 mRNA 表达水平调节结肠癌细胞的 5-氟尿嘧啶耐药性

阅读:6
作者:Tao Liu, Rongmu Xia, Chenmeng Li, Xiaocong Chen, Xuemin Cai, Wengang Li

Abstract

Drug resistance severely affects the clinical efficacy of therapeutic agents in patients with colon cancer. The aim of the present study was to identify genes involved in drug resistance in colon cancer using bioinformatics analysis and to identify the underlying mechanisms in vitro. Genes associated with cancer recurrence and chemotherapy resistance were identified using data mining. Immunohistochemistry was performed to analyze the protein expression level of genes of interest in human colon cancer tissues. Reverse transcription-quantitative PCR analysis was performed to analyze the gene expression level in patient samples and in colon cancer cell lines (HCT116 and LoVo). Cell viability was evaluated using the Cell Counting Kit-8 assay in the colon cancer cell lines. Apoptosis was measured using PI staining. The results from the present study revealed 602 genes using both 'cancer recurrence' and 'chemoresistance' terms on the GenCLiP3 website. Gene functional annotation was performed using the Database for Annotation, Visualization and Integrated Discovery then, the protein-protein interaction networks of the 602 genes were analyzed using STRING analysis. Further, in the GEPIA database, 14 genes (ATM, CDH2, CDKN2A, EPO, LEP, TGFB1, TIMP1, PGR, VEGFC, POSTN, BCL6, CYP19A1, NOTCH3 and XPA) were found to be upregulated in colon cancer tissue and were associated with poor prognosis in patients with colon cancer. Further analysis of 33 paired human colon cancer tissues revealed that 8 genes (ATM, CDH2, CDKN2A, LEP, PGR, TIMP1, POSTN and VEGFC) were significantly upregulated, which was consistent with the results obtained from the earlier analysis and 5 genes (CDH2, LEP, POSTN, TIMP1 and VEGFC) were associated with patient prognosis. Silencing of these 5 genes using small interfering RNAs significantly enhanced the sensitivity of colon cancer cells to the chemotherapeutic agent, 5-fluorouracil (5-FU). Taken together, the results suggested that CDH2, LEP, POSTN, TIMP1 and VEGFC might play a role in chemotherapeutic resistance in colon cancer and represent potential targets for overcoming 5-FU resistance in colon cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。