Role of GOLPH3 and TPX2 in Neuroblastoma DNA Damage Response and Cell Resistance to Chemotherapy

GOLPH3 和 TPX2 在神经母细胞瘤 DNA 损伤反应和细胞对化疗的耐药性中的作用

阅读:5
作者:Marzia Ognibene, Marina Podestà, Alberto Garaventa, Annalisa Pezzolo

Abstract

Neuroblastoma (NB) is an aggressive, relapse-prone infancy tumor of the sympathetic nervous system and is the leading cause of death among preschool age diseases, so the search for novel therapeutic targets is crucial. Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development, and in the DNA damage response, of various human cancers. Golgi dispersal is a common feature of DNA damage response in mammalian cells. Understanding how cells react to DNA damage is essential in order to recognize the systems used to escape from elimination. We induced DNA damage in two human neuroblastoma cell lines by curcumin. The exposure of neuroblastoma cells to curcumin induced: (a) up-regulation of GOLPH3+ cells; (b) augmentation of double-strand breaks; (c) Golgi fragmentation and dispersal throughout the cytoplasm; (d) increase of apoptosis and autophagy; (e) increased expression of TPX2 oncoprotein, able to repair DNA damage. Primary neuroblastoma samples analysis confirmed these observations. Our findings suggest that GOLPH3 expression levels may represent a clinical marker of neuroblastoma patients' responsiveness to DNA damaging therapies-and of possible resistance to them. Novel molecules able to interfere with GOLPH3 and TPX2 pathways may have therapeutic benefits when used in combination with standard DNA damaging therapeutic agents in neuroblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。