Impact of spatial and temporal stability of flow vortices on vascular endothelial cells

流动涡旋的空间和时间稳定性对血管内皮细胞的影响

阅读:7
作者:Kevin Sunderland #, Wenkai Jia #, Weilue He #, Jingfeng Jiang, Feng Zhao

Conclusion

This work demonstrates highly stable disturbed flow imparts increased inflammatory signaling, degraded cell-cell adhesion, and increased cellular apoptosis than unstable vortices. Such knowledge offers novel insight toward understanding IA development and rupture.

Methods

Vortex and EC interplay was investigated by a novel combination of parallel plate flow chamber (PPFC) design and computational analysis. ECs were exposed to laminar (7.5 dynes/[Formula: see text] wall shear stress) or low (<1 dynes/[Formula: see text]) stress vortical flow using PPFCs. Immunofluorescent imaging analyzed EC morphology, while ELISA tests quantified VE-cadherin (cell-cell adhesion), VCAM-1 (macrophage-EC adhesion), and cleaved caspase-3 (apoptotic signal) expression. PPFC flow was simulated, and vortex stability was calculated via the temporally averaged degree of (volume) overlap (TA-DVO) of vortices within a given area.

Purpose

Intracranial aneurysms (IAs) are pathological dilations of cerebrovascular vessels due to degeneration of the mechanical strength of the arterial wall, precluded by altered cellular functionality. The presence of swirling hemodynamic flow (vortices) is known to alter vascular endothelial cell (EC) morphology and protein expression indicative of IAs. Unfortunately, less is known if vortices with varied spatial and temporal stability lead to differing levels of EC change. The aim of this work is to investigate vortices of varying spatial and temporal stability impact on ECs.

Results

EC morphological changes were independent of vortex stability. Increased stability promoted VE-cadherin degradation (correlation coefficient r = [Formula: see text]0.84) and 5-fold increased cleaved caspase-3 post 24 h in stable (TA-DVO 0.736 ± 0.05) vs unstable (TA-DVO 0.606 [Formula: see text]0.2) vortices. ECs in stable vortices displayed a 4.5-fold VCAM-1 increase than unstable counterparts after 12 h.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。