SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites

SUMO化可稳定hSSB1并增强NBS1向DNA损伤位点的募集

阅读:6
作者:Liwen Zhou #, Lisi Zheng #, Kaishun Hu #, Xin Wang, Ruhua Zhang, Yezi Zou, Li Zhong, Shang Wang, Yuanzhong Wu, Tiebang Kang

Abstract

Human single-stranded DNA-binding protein 1 (hSSB1) is required for the efficient recruitment of the MRN complex to DNA double-strand breaks and is essential for the maintenance of genome integrity. However, the mechanism by which hSSB1 recruits NBS1 remains elusive. Here, we determined that hSSB1 undergoes SUMOylation at both K79 and K94 under normal conditions and that this modification is dramatically enhanced in response to DNA damage. SUMOylation of hSSB1, which is specifically fine-tuned by PIAS2α, and SENP2, not only stabilizes the protein but also enhances the recruitment of NBS1 to DNA damage sites. Cells with defective hSSB1 SUMOylation are sensitive to ionizing radiation, and global inhibition of SUMOylation by either knocking out UBC9 or adding SUMOylation inhibitors significantly enhances the sensitivity of cancer cells to etoposide. Our findings reveal that SUMOylation, as a novel posttranslational modification of hSSB1, is critical for the functions of this protein, indicating that the use of SUMOylation inhibitors (e.g., 2-D08 and ML-792) may be a new strategy that would benefit cancer patients being treated with chemo- or radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。