Lysine methyltransferase SMYD2 inhibits antiviral innate immunity by promoting IRF3 dephosphorylation

赖氨酸甲基转移酶SMYD2通过促进IRF3去磷酸化抑制抗病毒先天免疫。

阅读:1
作者:Jiacheng Wu # ,Ye Hu # ,Jiaying Song # ,Jia Xu ,Qian Zhang ,Yangyang Chai ,Xin Wang ,Bingjing Wang ,Yong Zhao ,Xuetao Cao ,Xiaoqing Xu

Abstract

Phosphorylation of IRF3 is critical to induce type I interferon (IFN-I) production in antiviral innate response. Here we report that lysine methyltransferase SMYD2 inhibits the expressions of IFN-I and proinflammatory cytokines in macrophages upon viral infections. The Smyd2-deficient mice are more resistant to viral infection by producing more IFN-I and proinflammatory cytokines. Mechanistically, SMYD2 inhibits IRF3 phosphorylation in macrophages in response to viral infection independent of its methyltransferase activity. We found that SMYD2 interacts with the DNA-binding domain (DBD) and IRF association domain (IAD) domains of IRF3 by its insertion SET domain (SETi) and could recruit phosphatase PP1α to enhance its interaction with IRF3, which leads to decreased phosphorylation of IRF3 in the antiviral innate response. Our study identifies SMYD2 as a negative regulator of IFN-I production against virus infection. The new way of regulating IRF3 phosphorylation will provide insight into the understanding of IFN-I production in the innate response and possible intervention of the related immune disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。