Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis

普氏立克次体利用 sn-甘油-3-磷酸脱氢酶和新型二羟基丙酮磷酸转运系统为磷脂生物合成提供三糖磷酸

阅读:6
作者:Kyla M Frohlich, Rosemary A W Roberts, Nicole A Housley, Jonathon P Audia

Abstract

Rickettsia prowazekii is an obligate intracellular pathogen that possesses a small genome and a highly refined repertoire of biochemical pathways compared to those of free-living bacteria. Here we describe a novel biochemical pathway that relies on rickettsial transport of host cytosolic dihydroxyacetone phosphate (DHAP) and its subsequent conversion to sn-glycerol-3-phosphate (G3P) for synthesis of phospholipids. This rickettsial pathway compensates for the evolutionary loss of rickettsial glycolysis/gluconeogenesis, the typical endogenous source of G3P. One of the components of this pathway is R. prowazekii open reading frame RP442, which is annotated GpsA, a G3P dehydrogenase (G3PDH). Purified recombinant rickettsial GpsA was shown to specifically catalyze the conversion of DHAP to G3P in vitro. The products of the GpsA assay were monitored spectrophotometrically, and the identity of the reaction product was verified by paper chromatography. In addition, heterologous expression of the R. prowazekii gpsA gene functioned to complement an Escherichia coli gpsA mutant. Furthermore, gpsA mRNA was detected in R. prowazekii purified from hen egg yolk sacs, and G3PDH activity was assayable in R. prowazekii lysed-cell extracts. Together, these data strongly suggested that R. prowazekii encodes and synthesizes a functional GpsA enzyme, yet R. prowazekii is unable to synthesize DHAP as a substrate for the GpsA enzymatic reaction. On the basis of the fact that intracellular organisms often avail themselves of resources in the host cell cytosol via the activity of novel carrier-mediated transport systems, we reasoned that R. prowazekii transports DHAP to supply substrate for GpsA. In support of this hypothesis, we show that purified R. prowazekii transported and incorporated DHAP into phospholipids, thus implicating a role for GpsA in vivo as part of a novel rickettsial G3P acquisition pathway for phospholipid biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。