Identification and Characterization of Auxin/IAA Biosynthesis Pathway in the Rice Blast Fungus Magnaporthe oryzae

稻瘟病菌Magnaporthe oryzae中生长素/IAA生物合成途径的鉴定与特性

阅读:4
作者:Lihong Dong, Yuming Ma, Cheng-Yen Chen, Lizheng Shen, Wenda Sun, Guobing Cui, Naweed I Naqvi, Yi Zhen Deng

Abstract

The rice blast fungus Magnaporthe oryzae has been known to produce the phytohormone auxin/IAA from its hyphae and conidia, but the detailed biological function and biosynthesis pathway is largely unknown. By sequence homology, we identified a complete indole-3-pyruvic acid (IPA)-based IAA biosynthesis pathway in M. oryzae, consisting of the tryptophan aminotransferase (MoTam1) and the indole-3-pyruvate decarboxylase (MoIpd1). In comparison to the wild type, IAA production was significantly reduced in the motam1Δ mutant, and further reduced in the moipd1Δ mutant. Correspondingly, mycelial growth, conidiation, and pathogenicity were defective in the motam1Δ and the moipd1Δ mutants to various degrees. Targeted metabolomics analysis further confirmed the presence of a functional IPA pathway, catalyzed by MoIpd1, which contributes to IAA/auxin production in M. oryzae. Furthermore, the well-established IAA biosynthesis inhibitor, yucasin, suppressed mycelial growth, conidiation, and pathogenicity in M. oryzae. Overall, this study identified an IPA-dependent IAA synthesis pathway crucial for M. oryzae mycelial growth and pathogenic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。