The Biomimetics of Mg2+-Concentration-Resolved Microenvironment for Bone and Cartilage Repairing Materials Design

Mg2+浓度分辨微环境的仿生学在骨和软骨修复材料设计中的应用

阅读:6
作者:Zhengqiang Li, Xiaoxue Zheng, Yixing Wang, Tianyi Tao, Zilin Wang, Long Yuan, Bing Han

Abstract

With the increase in population aging, the tendency of osteochondral injury will be accelerated, and repairing materials are increasingly needed for the optimization of the regenerative processes in bone and cartilage recovery. The local environment of the injury sites and the deficiency of Mg2+ retards the repairing period via inhibiting the progenitor osteogenesis and chondrogenesis cells’ recruitment, proliferation, and differentiation, which results in the sluggish progress in the osteochondral repairing materials design. In this article, we elucidate the Mg2+-concentration specified effect on the cell proliferation, osteochondral gene expression, and differentiation of modeling chondrocytes (extracted from New Zealand white rabbit) and osteoblasts (MC3T3-E1). The concentration of Mg2+ in the culture medium affects the proliferation, chondrogenesis, and osteogenesis: (i) Appropriate concentrations of Mg2+ promote the proliferation of chondrocytes (1.25−10.0 mM) and MC3T3-E1 cells (2.5−30.0 mM); (ii) the optimal concentration of Mg2+ that promotes the gene expression of noncalcified cartilage is 15 mM, calcified cartilage 10 mM, and subchondral bone 5 mM, respectively; (iii) overdosed Mg2+ leads to the inhibition of cell activity for either chondrocytes (>20 mM) or osteoblasts (>30 mM). The biomimetic elucidation for orchestrating the allocation of gradient concentration of Mg2+ in accordance of the physiological condition is crucial for designing the accurate microenvironment in osteochondral injury defects for optimization of bone and cartilage repairing materials in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。