Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy

光学和计算显微镜揭示植物固醇聚集与膜微区相关

阅读:5
作者:Ling Tang, Yang Li, Cheng Zhong, Xin Deng, Xiaohua Wang

Abstract

Local inhomogeneities in lipid composition play a crucial role in the regulation of signal transduction and membrane traffic. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used a new push-pull pyrene probe and fluorescence lifetime imaging microscopy (FLIM) combined with all-atom multiscale molecular dynamics simulations to provide a detailed view on the interaction between phospholipids and phytosterol and the effect of modulating cellular phytosterols on membrane-associated microdomains and phase separation formation. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. Comparing phospholipids/phytosterol compositions typical of liquid-disordered (Ld) and liquid-ordered (Lo) domains, we furthermore show that phytosterols play crucial roles in membrane homeostasis. The simulation work highlights how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries can be made through a computational microscope. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of plant cells and suggest that they are key compounds for the formation of plant PM microdomains and the lipid-ordered phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。