STAT3-mediated astrogliosis protects myelin development in neonatal brain injury

STAT3 介导的星形胶质增生保护新生儿脑损伤中的髓鞘发育

阅读:6
作者:Hiroko Nobuta, Cristina A Ghiani, Pablo M Paez, Vilma Spreuer, Hongmei Dong, Rose A Korsak, Armine Manukyan, Jiaxi Li, Harry V Vinters, Eric J Huang, David H Rowitch, Michael V Sofroniew, Anthony T Campagnoni, Jean de Vellis, James A Waschek

Methods

Postmortem brains of neonatal brain injury were investigated to identify molecular features of reactive astrocytes. The contribution of astrogliosis to WMI was further tested in a mouse model in genetically engineered mice.

Objective

Pathological findings in neonatal brain injury associated with preterm birth include focal and/or diffuse white matter injury (WMI). Despite the heterogeneous nature of this condition, reactive astrogliosis and microgliosis are frequently observed. Thus, molecular mechanisms by which glia activation contribute to WMI were investigated.

Results

Activated STAT3 signaling in reactive astrocytes was found to be a common feature in postmortem brains of neonatal brain injury. In a mouse model of neonatal WMI, conditional deletion of STAT3 in astrocytes resulted in exacerbated WMI, which was associated with delayed maturation of oligodendrocytes. Mechanistically, the delay occurred in association with overexpression of transforming growth factor (TGF)β-1 in microglia, which in healthy controls decreased with myelin maturation in an age-dependent manner. TGFβ-1 directly and dose-dependently inhibited the maturation of purified oligodendrocyte progenitors, and pharmacological inhibition of TGFβ-1 signaling in vivo reversed the delay in myelin development. Factors secreted from STAT3-deficient astrocytes promoted elevated TGFβ-1 production in cultured microglia compared to wild-type astrocytes. Interpretation: These results suggest that myelin development is regulated by a mechanism involving crosstalk between microglia and oligodendrocyte progenitors. Reactive astrocytes may modify this signaling in a STAT3-dependent manner, preventing the pathological expression of TGFβ-1 in microglia and the impairment of oligodendrocyte maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。