Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCα invasive signaling axis

黏着斑向侵袭性伪足转变的网络分析确定了 PI3K-PKCα 侵袭性信号轴

阅读:5
作者:Daisuke Hoshino, Jerome Jourquin, Shane Weller Emmons, Tyne Miller, Margalit Goldgof, Kaitlin Costello, Darren R Tyson, Brandee Brown, Yiling Lu, Nagendra K Prasad, Bing Zhang, Gordon B Mills, Wendell G Yarbrough, Vito Quaranta, Motoharu Seiki, Alissa M Weaver

Abstract

In cancer, deregulated signaling can produce an invasive cellular phenotype. We modeled the invasive transition as a theoretical switch between two cytoskeletal structures: focal adhesions and extracellular matrix-degrading invadopodia. We constructed molecular interaction networks of each structure and identified upstream regulatory hubs through computational analyses. We compared these regulatory hubs to the status of signaling components from head and neck carcinomas, which led us to analyze phosphatidylinositol 3-kinase (PI3K) and protein kinase C α (PKCα). Consistent with previous studies, PI3K activity promoted both the formation and the activity of invadopodia. We found that PI3K induction of invadopodia was increased by overexpression of SH2 (Src homology 2) domain-containing inositol 5'-phosphatase 2 (SHIP2), which converts the phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] that is produced by PI3K activity to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], which is believed to promote invadopodia formation. Knockdown of PKCα had divergent effects on invadopodia formation, depending on the status of PI3K. Loss of PKCα inhibited invadopodia formation in cells with wild-type PI3K pathway status. Conversely, in cells with constitutively active PI3K (through activating PI3K mutants or lacking the endogenous opposing enzyme PTEN), PKCα knockdown increased invadopodia formation. Mechanistic studies revealed a negative feedback loop from PKCα that dampened PI3K activity and invasive behavior in cells with genetic hyperactivation of the PI3K pathway. These studies demonstrated the potential of network modeling as a discovery tool and identified PI3K and PKCα as interacting regulators of invasive behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。