Sepiapterin decreases acute rejection and apoptosis in cardiac transplants independently of changes in nitric oxide and inducible nitric-oxide synthase dimerization

墨角蝶呤可减少心脏移植中的急性排斥和细胞凋亡,且与一氧化氮和诱导型一氧化氮合酶二聚化的变化无关

阅读:5
作者:Galen M Pieper, Irina A Ionova, Brian C Cooley, Raymond Q Migrino, Ashwani K Khanna, Jennifer Whitsett, Jeannette Vásquez-Vivar

Abstract

Tetrahydrobiopterin (BH(4)), a cofactor of inducible nitric-oxide synthase (iNOS), is an important post-translational regulator of NO bioactivity. We examined whether treatment of cardiac allograft recipients with sepiapterin [S-(-)-2-amino-7,8-dihydro-6-(2-hydroxy-1-oxopropyl)-4-(1H)-pteridinone], a precursor of BH(4), inhibited acute rejection and apoptosis in cardiac transplants. Heterotopic cardiac transplantation was performed in Wistar-Furth donor to Lewis recipient strain rats. Recipients were treated daily after transplantation with 10 mg/kg sepiapterin. Grafts were harvested on post-transplant day 6 for analysis of BH(4) (high-performance liquid chromatography), expression of inflammatory cytokines (reverse transcription- and real-time polymerase chain reaction), iNOS (Western blots), and NO (Griess reaction and NO analyzer). Histological rejection grade was scored, and graft function was determined by echocardiography. Apoptosis, protein nitration, and oxidative stress were determined by immunohistochemistry. Treatment of allografts with sepiapterin increased cardiac BH(4) levels by 3-fold without changing protein levels of GTP cyclohydrolase, the enzyme that regulates de novo BH(4) synthesis. Sepiapterin decreased inflammatory cell infiltrate and significantly inhibited histological rejection scores and apoptosis similar in magnitude to cyclosporine. Sepiapterin also decreased nitrative and oxidative stress. Sepiapterin caused a smaller increase in left ventricular mass versus untreated allografts but without improving fractional shortening. Sepiapterin did not alter tumor necrosis factor-alpha and interferon-gamma expression, whereas it decreased interleukin (IL)-2 expression. Sepiapterin did not change total iNOS protein or monomer levels, or plasma and tissue NO metabolites levels. It is concluded that the mechanism(s) of antirejection are due in part to decreased apoptosis, protein nitration, and oxidation of cardiomyocytes, which seems to be mediated at the immune level by limiting inflammatory cell infiltration via decreased IL-2-mediated T-lymphocyte expansion.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。