Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis

斑蝥素是一种强效且选择性的 PP2A 抑制剂,它通过 G2/M 细胞周期停滞和细胞凋亡诱导胰腺癌细胞的氧化应激独立生长抑制

阅读:8
作者:Wei Li, Li Xie, Zheng Chen, Yi Zhu, Yujie Sun, Yi Miao, Zekuan Xu, Xiao Han

Abstract

Cantharidin is an active constituent of mylabris, a traditional Chinese medicine. It is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in control of cell cycle, apoptosis, and cell-fate determination. Owing to its antitumor activity, cantharidin has been frequently used in clinical practice. In the present study, we investigated the therapeutic potential of cantharidin in pancreatic cancer. Cantharidin efficiently inhibited the growth of pancreatic cancer cells, but presented a much lighter toxicity effect against normal pancreatic duct cells. It caused G2/M cell-cycle arrest that was accompanied by the down-regulation of cyclin-dependent kinase 1 (CDK1) and up-regulation of p21 expression. It induced apoptosis and elevated the expressions of pro-apoptotic factors tumor necrosis factor-alpha (TNF-alpha), TNF-related apoptosis inducing receptor 1 (TRAILR1), TRAILR2, Bad, Bak, and Bid, and decreased the expression of anti-apoptotic Bcl-2. Activation of caspase-8 and caspase-9 suggested that both extrinsic and intrinsic pathways are involved in the induction of apoptosis. Interestingly, unlike previous studies on other cancer cells, we found that the inhibitory role of cantharidin is independent of oxidative stress in pancreatic cancer cells. Mitogen-activated protein kinases (MAPKs), including ERK, JNK, and p38, were activated after treatment with cantharidin. Inhibition of JNK, but not ERK or p38, alleviated the cytotoxity effect of cantharidin, suggesting cantharidin exerted its anticancer effect through the JNK-dependent way. Hence, in addition to being an attractive candidate compound with therapeutic potential, cantharidin also highlighted the possibility of using PP2A as a therapeutic target for pancreatic cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。