Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines

三氟胸苷与表皮生长因子受体抑制剂厄洛替尼在人结直肠癌细胞系中协同作用的分子机制

阅读:5
作者:Irene V Bijnsdorp, Frank A E Kruyt, Masakazu Fukushima, Kees Smid, Shanti Gokoel, Godefridus J Peters

Abstract

The pyrimidine trifluorothymidine (TFT) inhibits thymidylate synthase (TS) and can be incorporated into the DNA. TFT, as part of TAS-102, is clinically evaluated in phase II studies as an oral chemotherapeutic agent. Erlotinib is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that is often deregulated in colorectal cancer. This study investigated molecular mechanisms underlying the cytotoxic actions of the combination of an EGFR-tyrosine kinase inhibitor with TFT in colorectal cancer cells Caco2, WiDR, Lovo92, and Colo320. Drug interactions were examined by the sulforhodamine B assay and subsequent combination index (CI) analyses, cell cycle effects by FACS analysis of propidium iodide stained cells, Akt, MAPK and EGFR phosphorylation and expression levels by Western blotting and TS activity by the TS in situ assay. All combination schedules were synergistic in wt-EGFR expressing (but with mutated downstream pathways) WiDR and Lovo92 (CI 0.4-0.8) and very synergistic in Caco2 cells (with wt-EGFR and functional downstream pathways; CI 0.1-0.3), but in EGFR-lacking Colo320 cells, no additional activity was found (CI 1.0-1.2). Synergism was mostly related to the induction of cell cycle arrest and an erlotinib-mediated inhibition of the pro-survival signaling through Akt and MAPK that was activated (phosphorylated) by TFT. Erlotinib inhibited TS activity in EGFR-expressing cell lines, probably due to cell cycle arrest in the G(1) phase. TS activity was slightly lower in the combinations, probably due to cell cycle interference. Taken together, the combination of erlotinib with TFT seems to present a potential strategy in the field of molecular therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。