Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130

抑制聚(ADP-核糖)聚合酶可下调由 E2F4 和 p130 介导的通路中的 BRCA1 和 RAD51

阅读:4
作者:Denise Campisi Hegan, Yuhong Lu, Gregory C Stachelek, Meredith E Crosby, Ranjit S Bindra, Peter M Glazer

Abstract

Inhibitors of poly(ADP-ribose) polymerase (PARP) are in clinical trials for cancer therapy, on the basis of the role of PARP in recruitment of base excision repair (BER) factors to sites of DNA damage. Here we show that PARP inhibition to block BER is toxic to hypoxic cancer cells, in which homology-dependent repair (HDR) is known to be down-regulated. However, we also report the unexpected finding that disruption of PARP, itself, either via chemical PARP inhibitors or siRNAs targeted to PARP-1, can inhibit HDR by suppressing expression of BRCA1 and RAD51, key factors in HDR of DNA breaks. Mechanistically, PARP inhibition was found to cause increased occupancy of the BRCA1 and RAD51 promoters by repressive E2F4/p130 complexes, a pathway prevented by expression of HPV E7, which disrupts p130 activity, or by siRNAs to knock down p130 expression. Functionally, disruption of p130 by E7 expression or by siRNA knockdown also reverses the cytotoxicity and radiosensitivity associated with PARP inhibition, suggesting that the down-regulation of BRCA1 and RAD51 is central to these effects. Direct measurement of HDR using a GFP-based assay demonstrates reduced HDR in cells treated with PARP inhibitors. This work identifies a mechanism by which PARP regulates DNA repair and suggests new strategies for combination cancer therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。