Computational and functional studies of the PI(4,5)P2 binding site of the TRPM3 ion channel reveal interactions with other regulators

TRPM3 离子通道 PI(4,5)P2 结合位点的计算和功能研究揭示了与其他调节器的相互作用

阅读:6
作者:Siyuan Zhao, Vincenzo Carnevale, Matthew Gabrielle, Eleonora Gianti, Tibor Rohacs

Abstract

Transient receptor potential melastatin 3 (TRPM3) is a heat-activated ion channel expressed in peripheral sensory neurons and the central nervous system. TRPM3 activity depends on the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but the molecular mechanism of activation by PI(4,5)P2 is not known. As no experimental structure of TRPM3 is available, we built a homology model of the channel in complex with PI(4,5)P2via molecular modeling. We identified putative contact residues for PI(4,5)P2 in the pre-S1 segment, the S4-S5 linker, and the proximal C-terminal TRP domain. Mutating these residues increased sensitivity to inhibition of TRPM3 by decreasing PI(4,5)P2 levels. Changes in ligand-binding affinities via molecular mechanics/generalized Born surface area (MM/GBSA) showed reduced PI(4,5)P2 affinity for the mutants. Mutating PI(4,5)P2-interacting residues also reduced sensitivity for activation by the endogenous ligand pregnenolone sulfate, pointing to an allosteric interaction between PI(4,5)P2 and pregnenolone sulfate. Similarly, mutating residues in the PI(4,5)P2 binding site in TRPM8 resulted in increased sensitivity to PI(4,5)P2 depletion and reduced sensitivity to menthol. Mutations of most PI(4,5)P2-interacting residues in TRPM3 also increased sensitivity to inhibition by Gβγ, indicating allosteric interaction between Gβγ and PI(4,5)P2 regulation. Disease-associated gain-of-function TRPM3 mutations on the other hand resulted in no change of PI(4,5)P2 sensitivity, indicating that mutations did not increase channel activity via increasing PI(4,5)P2 interactions. Our data provide insight into the mechanism of regulation of TRPM3 by PI(4,5)P2, its relationship to endogenous activators and inhibitors, as well as identify similarities and differences between PI(4,5)P2 regulation of TRPM3 and TRPM8.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。