Circulating extracellular vesicles from severe COVID-19 patients induce lung inflammation

重症 COVID-19 患者循环细胞外囊泡诱发肺部炎症

阅读:5
作者:Huifeng Qian #, Ruoxi Zang #, Ruoyang Zhang, Guoping Zheng, Guanguan Qiu, Jianbiao Meng, Jiangmei Wang, Jie Xia, Ruoqiong Huang, Zhenkai Le, Qiang Shu, Jianguo Xu

Abstract

Circulating extracellular vesicles (EVs) have been associated with the development of COVID-19 due to their roles in viral infection, inflammatory response, and thrombosis. However, the direct induction of lung inflammation by circulating EVs from severe COVID-19 patients remains unknown. EVs were extracted from the plasma of severe COVID-19 patients admitted to intensive care and healthy controls. To study the effect of COVID-19 EVs on lung inflammation, mice were intratracheally instilled with EVs. To examine the proinflammatory effects of EVs in vitro, bone marrow-derived macrophages were treated with EVs. COVID-19 but not control EVs triggered lung inflammation, as assessed by total protein level, total cell count, neutrophil count, and levels of proinflammatory cytokines in the bronchoalveolar lavage. COVID-19 EVs also promoted M1 polarization of alveolar macrophages in vivo. Treatment of bone marrow-derived macrophages with COVID-19 EVs enhanced the M1 phenotype and augmented the production of IL-1β, IL-6, and TNF-α. In summary, circulating EVs from severe COVID-19 patients induce lung inflammation in mice. EVs could become a potential therapeutic target for alleviating lung injury in COVID-19. Importance: Extracellular vesicles (EVs) have been reported to facilitate cytokine storm, coagulation, vascular dysfunction, and the spread of the virus in COVID-19. The direct role of circulating EVs from severe COVID-19 patients in lung injury remains unrecognized. Our study demonstrated that plasma EVs obtained from severe COVID-19 patients induced lung inflammation and polarization of alveolar macrophages in vivo. In vitro experiments also revealed the proinflammatory effects of COVID-19 EVs. The present study sheds fresh insight into the mechanisms of COVID-19-induced lung injury, highlighting EVs as a potential therapeutic target in combating the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。