FUS-mediated blood-brain barrier disruption for delivering anti-Aβ antibodies in 5XFAD Alzheimer's disease mice

FUS 介导的血脑屏障破坏为 5XFAD 阿尔茨海默病小鼠提供抗 Aβ 抗体

阅读:8
作者:Anastasia Antoniou, Marios Stavrou, Nikolas Evripidou, Elena Georgiou, Ioanna Kousiappa, Andreas Koupparis, Savvas S Papacostas, Kleopas A Kleopa, Christakis Damianou

Conclusion

These preliminary findings should be confirmed by longer-term studies examining the antibody effects on plaque clearance and cognitive benefit to hold promise for developing disease-modifying anti-Aβ therapeutics for clinical use.

Methods

The initial experimental work involved wild-type mice and was devoted to selecting the sonication protocol for efficient and safe BBBD. Pulsed FUS was applied using a single-element FUS transducer of 1 MHz (80 mm radius of curvature and 50 mm diameter). The success and extent of BBBD were assessed by Evans Blue extravasation and brain damage by hematoxylin and eosin staining. 5XFAD mice were divided into different subgroups; control (n = 1), FUS + MBs alone (n = 5), antibody alone (n = 5), and FUS + antibody combined (n = 10). The changes in antibody deposition among groups were determined by immunohistochemistry.

Purpose

Amyloid-β (Aβ) peptides, the main component of amyloid plaques found in the Alzheimer's disease (AD) brain, are implicated in its pathogenesis, and are considered a key target in AD therapeutics. We herein propose a reliable strategy for non-invasively delivering a specific anti-Aβ antibody in a mouse model of AD by microbubbles-enhanced Focused Ultrasound (FUS)-mediated Blood-brain barrier disruption (BBBD), using a simple single stage MR-compatible positioning device.

Results

It was confirmed that the antibody could not normally enter the brain parenchyma. A single treatment with MBs-enhanced pulsed FUS using the optimized protocol (1 MHz, 0.5 MPa in-situ pressure, 10 ms bursts, 1% duty factor, 100 s duration) transiently disrupted the BBB allowing for non-invasive antibody delivery to amyloid plaques within the sonicated brain regions. This was consistently reproduced in ten mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。