Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit

代谢组和转录组的综合分析揭示了桃果实中绿原酸合成的分子机制

阅读:5
作者:Ziwen Su, Haoran Jia, Meng Sun, Zhixiang Cai, Zhijun Shen, Bintao Zhao, Jiyao Li, Ruijuan Ma, Mingliang Yu, Juan Yan

Abstract

As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。