piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing

piRNA 协调 poly(UG) 尾部修饰,防止异常和永久性的基因沉默

阅读:10
作者:Aditi Shukla, Roberto Perales, Scott Kennedy

Abstract

Noncoding RNAs have emerged as mediators of transgenerational epigenetic inheritance (TEI) in a number of organisms. A robust example of such RNA-directed TEI is the inheritance of gene-silencing states following RNA interference (RNAi) in the metazoan C. elegans. During RNAi inheritance, gene silencing is transmitted by a self-perpetuating cascade of siRNA-directed poly(UG) tailing of mRNA fragments (pUGylation), followed by siRNA synthesis from poly(UG)-tailed mRNA templates (termed pUG RNA/siRNA cycling). Despite the self-perpetuating nature of pUG RNA/siRNA cycling, RNAi inheritance is finite, suggesting that systems likely exist to prevent indefinite RNAi-triggered gene silencing. Here we show that, in the absence of Piwi-interacting RNAs (piRNAs), an animal-specific class of small noncoding RNA, RNAi-based gene silencing can become essentially permanent, lasting at near 100% penetrance for more than 5 years and hundreds of generations. This perpetual gene silencing is mediated by continuous pUG RNA/siRNA cycling. Further, we find that piRNAs coordinate endogenous RNAi pathways to prevent germline-expressed genes, which are not normally subjected to TEI, from entering a state of continual and irreversible epigenetic silencing also mediated by continuous maintenance of pUG RNA/siRNA cycling. Together, our results show that one function of C. elegans piRNAs is to insulate germline-expressed genes from aberrant and runaway inactivation by the pUG RNA/siRNA epigenetic inheritance system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。