Herpes Virus Entry Mediator (HVEM) Expression Promotes Inflammation/ Organ Injury in Response to Experimental Indirect-Acute Lung Injury

疱疹病毒进入介质 (HVEM) 表达促进实验性间接急性肺损伤引起的炎症/器官损伤

阅读:15
作者:Tingting Cheng, Jianwen Bai, Chun-Shiang Chung, Yaping Chen, Eleanor A Fallon, Alfred Ayala

Abstract

Therapeutic interventions to treat acute lung injury (ALI) remain largely limited to lung-protective strategies, as a real molecular pathophysiologically driven therapeutic intervention has yet to become available. While we have previously documented the expression of herpes virus entry mediator (HVEM) on leukocytes of septic mice and critically ill patients, its functional role in shock/sepsis-induced ALI has not yet been studied. Inasmuch, a murine model of indirect ALI (iALI) was induced by hemorrhagic shock (HEM) followed by cecal ligation and puncture (CLP), septic challenge and HVEM-siRNA or phosphate buffered saline was administrated by intratracheal instillation 2 h after hemorrhage to determine the role of HVEM in the development of experimental iALI. Indices of lung injury were measured. HVEM expression was significantly elevated in iALI mice. Compared with phosphate buffered saline treated iALI mice, HVEM knock-down by siRNA caused a reduction of cytokine/chemokine levels, myeloperoxidase activity, broncho-alveolar lavage fluid (BALF) cell count and protein concentration. HVEM-siRNA treatment reduced inflammation and attenuated pulmonary architecture destruction as well as provided an early (60 h post HEM-CLP) survival benefit in iALI mice. This ability of anti-HVEM treatment to prevent the development of iALI and provide a transient survival benefit implies that mitigating signaling through HVEM may be a novel target worth further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。