Involvement of organic cation transporter 3 (Oct3/Slc22a3) in the bioavailability and pharmacokinetics of antidiabetic metformin in mice

有机阳离子转运体 3 (Oct3/Slc22a3) 参与小鼠抗糖尿病二甲双胍的生物利用度和药代动力学

阅读:6
作者:Yoshiyuki Shirasaka, Nora Lee, Weibin Zha, David Wagner, Joanne Wang

Abstract

Metformin is widely used for the treatment of type II diabetes mellitus. It was reported to be substrate of OCT3/Oct3, which is expressed in the brush boarder membrane of the enterocytes. However, the role of OCT3/Oct3 in the intestinal absorption process of metformin remains obscure. In the present study, we aimed to clarify the impact of Oct3 on the oral bioavailability and pharmacokinetics of metformin in mice, by means of in vivo pharmacokinetic study using wild-type (Oct3+/+) and Oct3-knockout (Oct3-/-) mice. When metformin (8.0 mg/kg) was intravenously administered to male Oct3+/+ and Oct3-/- mice, AUC0-∞ of metformin was evaluated to be 659 ± 133 μg h/mL and 734 ± 213 μg h/mL, respectively. In the case of orally administered metformin (15 mg/kg), AUC0-∞ was 578 ± 158 μg h/mL and 449 ± 101 μg h/mL in Oct3+/+ and Oct3-/- mice, respectively. Based on these pharmacokinetic parameters, absolute bioavailability (F) of metformin in Oct3+/+ mice was evaluated as 46.8%, and it was significantly decreased to 32.6% in Oct3-/- mice. Taking into account the fact that metformin undergoes negligible metabolism, these results imply that intestinal absorption of metformin is mediated at least in part by Oct3 in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。