T-cell autonomous death induced by regeneration of inert glucocorticoid metabolites

惰性糖皮质激素代谢物再生引起的 T 细胞自主死亡

阅读:6
作者:Lourdes Rocamora-Reverte, Holger M Reichardt, Andreas Villunger, GJan Wiegers

Abstract

Glucocorticoids (GC) are essential regulators of T-cell development and function. Activation of the immune system increases systemic adrenal-derived GC levels which downregulate immune activity as part of a negative feedback control system. Increasing evidence shows, however, that GC can also be derived from extra-adrenal sources such as the thymus or intestine, thus providing local control of GC-mediated effects. The thymus reportedly produces GC, but whether thymic epithelial cells or thymocytes produce GC acting either in an autocrine or paracrine fashion is not clear. We studied the expression of two main enzymes involved in de novo GC synthesis, CYP11A1 and CYP11B1, as well as the expression and activity of HSD11B1, an enzyme catalyzing interconversion of inert GC metabolites with active GC. While we found no evidence of de novo GC synthesis in both thymocytes and peripheral T cells, abundant regeneration of GC from the inactive metabolite 11-dehydrocorticosterone was detectable. Irrespective of their maturation stage, T cells that produced GC in this manner undergo autonomous cell death as this was blocked when glucocorticoid receptor-deficient T cells were treated with GC metabolites. These results indicate that both immature and mature T cells possess the capacity to undergo apoptosis in response to intrinsically generated GC. Consequently, positive selection of thymocytes, as well as survival of peripheral T cells may depend on TCR-induced escape of otherwise HSD11B1-driven autonomous T-cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。