Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default

异源三聚体 G 蛋白在细胞表面微区分离。G(q) 结合 Caveolin 并浓缩在 Caveolae 中,而 G(i) 和 G(s) 默认靶向脂筏

阅读:5
作者:P Oh, J E Schnitzer

Abstract

Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (G(i), G(q), G(s), and G(betagamma)) target discrete cell surface microdomains. G(q) specifically concentrates in caveolae, whereas G(i) and G(s) concentrate much more in lipid rafts marked by GPI-anchored proteins (5' nucleotidase and folate receptor). G(q), apparently without G(betagamma) subunits, stably associates with plasmalemmal and cytosolic caveolin. G(i) and G(s) interact with G(betagamma) subunits but not caveolin. G(i) and G(s), unlike G(q), readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize G(q) preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, G(q), G(i), and G(s) all concentrate in lipid rafts as a complex with G(betagamma). Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the G(q)-caveolin complex without G(betagamma) for trafficking, signaling, and mechanotransduction are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。