Aim
Targeting the phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is a potential means of overcoming chemoresistance in ovarian cancer. We investigated the capability of (18)F-fluororodeoxyglucose ((18)F-FDG) small-animal positron emission tomography (SA-PET) to predict the effects of a dual PI3K/mTOR inhibitor (BEZ-235) in a cisplatin-resistant ovarian cancer model.
Conclusions
(18)F-FDG SA-PET is a surrogate marker of target inhibition during treatment with BEZ-235 and predicts tumor recovery 4 days after drug withdrawal, but not during the first 48 hours following drug cessation, when a lag between PI3K/mTOR pathway recovery and metabolic recovery is observed. (18)F-FDG SA-PET could be used for therapy monitoring of PI3K/mTOR inhibitors, but our results also raise questions regarding the potential impact of the delay between PET imaging and the last drug intake on the accuracy of FDG imaging.
Methods
In a first experiment, nude rats bearing subcutaneous SKOV3 tumors received BEZ-235 for 3 days given alone or after paclitaxel and were compared to controls (either untreated or that were given the excipients of paclitaxel and BEZ-235). SA-PET was performed at baseline, on day 3, and day 7. In a second experiment aiming at further exploring the kinetics of (18)F-FDG tumor uptake during the first 48 hours following drug cessation, untreated controls were compared to rats receiving BEZ-235, which were imaged at baseline, on day 3, on day 4, and on day 5. SA-PET
Results
In the first experiment, BEZ-235, compared to untreated controls, induced a marked decrease in (18)F-FDG uptake on day 3, which was correlated to a significant decrease in cell proliferation and to a significant PI3K/mTOR pathway inhibition. No tumor necrosis or apoptosis occurred. Four days following treatment cessation, tumor recovery (in terms of PI3K/mTOR inhibition and cell proliferation) occurred and was identified by (18)F-FDG SA-PET. Paclitaxel plus BEZ-235 showed results similar to BEZ-235 alone. In the second experiment, PI3K/mTOR pathways exhibited partial recovery as early as 24 hours following treatment cessation, but both (18)F-FDG SA-PET and cell proliferation remained unchanged. Conclusions: (18)F-FDG SA-PET is a surrogate marker of target inhibition during treatment with BEZ-235 and predicts tumor recovery 4 days after drug withdrawal, but not during the first 48 hours following drug cessation, when a lag between PI3K/mTOR pathway recovery and metabolic recovery is observed. (18)F-FDG SA-PET could be used for therapy monitoring of PI3K/mTOR inhibitors, but our results also raise questions regarding the potential impact of the delay between PET imaging and the last drug intake on the accuracy of FDG imaging.
