Combining SPR with atomic-force microscopy enables single-molecule insights into activation and suppression of the complement cascade

将 SPR 与原子力显微镜相结合,可以从单分子角度洞察补体级联的激活和抑制

阅读:5
作者:Elisavet Makou, Richard G Bailey, Heather Johnston, John D Parkin, Alison N Hulme, Georg Hähner, Paul N Barlow

Abstract

Activation and suppression of the complement system compete on every serum-exposed surface, host or foreign. Potentially harmful outcomes of this competition depend on surface molecules through mechanisms that remain incompletely understood. Combining surface plasmon resonance (SPR) with atomic force microscopy (AFM), here we studied two complement system proteins at the single-molecule level: C3b, the proteolytically activated form of C3, and factor H (FH), the surface-sensing C3b-binding complement regulator. We used SPR to monitor complement initiation occurring through a positive-feedback loop wherein surface-deposited C3b participates in convertases that cleave C3, thereby depositing more C3b. Over multiple cycles of flowing factor B, factor D, and C3 over the SPR chip, we amplified C3b from ∼20 to ∼220 molecules·μm-2 AFM revealed C3b clusters of up to 20 molecules and solitary C3b molecules deposited up to 200 nm away from the clusters. A force of 0.17 ± 0.02 nanonewtons was needed to pull a single FH molecule, anchored to the AFM probe, from its complex with surface-attached C3b. The extent to which FH molecules stretched before detachment varied widely among complexes. Performing force-distance measurements with FH(D1119G), a variant lacking one of the C3b-binding sites and causing atypical hemolytic uremic syndrome, we found that it detached more uniformly and easily. In further SPR experiments, KD values between FH and C3b on a custom-made chip surface were 5-fold tighter than on commercial chips and similar to those on erythrocytes. These results suggest that the chemistry at the surface on which FH acts drives conformational adjustments that are functionally critical.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。